ReefVM/CLAUDE.md

379 lines
12 KiB
Markdown

# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
ReefVM is a stack-based bytecode virtual machine for the Shrimp programming language. It implements a complete VM with closures, tail call optimization, exception handling, variadic functions, named parameters, and Ruby-style iterators with break/continue.
**Essential reading**: Before making changes, read README.md, SPEC.md, and GUIDE.md to understand the VM architecture, instruction set, and compiler patterns.
## Development Commands
### Running Files
```bash
bun <file.ts> # Run TypeScript files directly
bun examples/native.ts # Run example
```
### Testing
```bash
bun test # Run all tests
bun test <file> # Run specific test file
bun test --watch # Watch mode
```
### Tools
```bash
./bin/reef <file.reef> # Execute bytecode file
./bin/validate <file.reef> # Validate bytecode
./bin/debug <file.reef> # Step-by-step debugger
./bin/repl # Interactive REPL
```
### Building
No build step required - Bun runs TypeScript directly.
## Architecture
### Core Components
**VM Execution Model** (src/vm.ts):
- Stack-based execution with program counter (PC)
- Call stack for function frames
- Exception handler stack for try/catch/finally
- Lexical scope chain with parent references (includes native functions)
**Key subsystems**:
- **bytecode.ts**: Compiler that converts both string and array formats to executable bytecode. Handles label resolution, constant pool management, and function definition parsing. The `toBytecode()` function accepts either a string (human-readable) or typed array format (programmatic).
- **value.ts**: Tagged union Value type system with type coercion functions (toNumber, toString, isTrue, isEqual)
- **scope.ts**: Linked scope chain for variable resolution with lexical scoping
- **frame.ts**: Call frame tracking for function calls and break targets
- **exception.ts**: Exception handler records for try/catch/finally blocks
- **validator.ts**: Bytecode validation to catch common errors before execution
- **opcode.ts**: OpCode enum defining all VM instructions
### Critical Design Decisions
**Relative jumps**: All JUMP instructions use PC-relative offsets (not absolute addresses), making bytecode position-independent. PUSH_TRY/PUSH_FINALLY use absolute addresses.
**Truthiness semantics**: Only `null` and `false` are falsy. Unlike JavaScript, `0`, `""`, empty arrays, and empty dicts are truthy.
**No AND/OR opcodes**: Short-circuit logical operations are implemented at the compiler level using JUMP patterns with DUP.
**Tail call optimization**: TAIL_CALL reuses the current call frame instead of pushing a new one, enabling unbounded recursion.
**Break semantics**: CALL marks frames as break targets. BREAK unwinds the call stack to the most recent break target, enabling Ruby-style iterator patterns.
**Exception handling**: THROW jumps to finally (if present) or catch. The VM does NOT auto-jump to finally on successful try completion - compilers must explicitly generate JUMPs to finally blocks.
**Parameter binding priority**: Named args bind to fixed params first. Unmatched named args go to `@named` dict parameter. Fixed params bind in order: named arg > positional arg > default > null.
**Native function calling**: Native functions are stored in scope and called via LOAD + CALL, using the same calling convention as Reef functions. They do not support named arguments.
## Testing Strategy
Tests are organized by feature area:
- **opcodes.test.ts**: Stack ops, arithmetic, comparisons, variables, control flow
- **functions.test.ts**: Function creation, calls, closures, defaults, variadic, named args
- **tail-call.test.ts**: Tail call optimization and unbounded recursion
- **exceptions.test.ts**: Try/catch/finally, exception unwinding, nested handlers
- **native.test.ts**: Native function interop (sync and async)
- **functions-parameter.test.ts**: Convenience parameter for passing functions to run() and VM
- **bytecode.test.ts**: Bytecode string parser, label resolution, constants
- **programmatic.test.ts**: Array format API, typed tuples, labels, functions
- **validator.test.ts**: Bytecode validation rules
- **unicode.test.ts**: Unicode and emoji identifiers
- **regex.test.ts**: RegExp support
- **examples.test.ts**: Integration tests for example programs
When adding features:
1. Add unit tests for the specific opcode/feature
2. Add integration tests showing real-world usage
3. Update SPEC.md with formal specification
4. Update GUIDE.md with compiler patterns
5. Consider adding an example to examples/
## Common Patterns
### Writing Bytecode Tests
ReefVM supports two bytecode formats: string and array.
**String format** (human-readable):
```typescript
import { toBytecode, run } from "#reef"
const bytecode = toBytecode(`
PUSH 42
STORE x
LOAD x
HALT
`)
const result = await run(bytecode)
// result is { type: 'number', value: 42 }
```
**Array format** (programmatic, type-safe):
```typescript
import { toBytecode, run } from "#reef"
const bytecode = toBytecode([
["PUSH", 42],
["STORE", "x"],
["LOAD", "x"],
["HALT"]
])
const result = await run(bytecode)
// result is { type: 'number', value: 42 }
```
Array format features:
- Typed tuples for compile-time type checking
- Labels defined as `[".label:"]` (single-element arrays with colon suffix)
- Label references as strings: `["JUMP", ".label"]` (no colon in references)
- Function params as string arrays: `["MAKE_FUNCTION", ["x", "y=10"], ".body"]`
- See `tests/programmatic.test.ts` and `examples/programmatic.ts` for examples
### Native Function Registration
**Option 1**: Pass to `run()` or `VM` constructor (convenience)
```typescript
const result = await run(bytecode, {
add: (a: number, b: number) => a + b,
greet: (name: string) => `Hello, ${name}!`
})
// Or with VM constructor
const vm = new VM(bytecode, { add, greet })
```
**Option 2**: Register with `vm.registerFunction()` (manual)
```typescript
const vm = new VM(bytecode)
vm.registerFunction('add', (a: number, b: number) => a + b)
await vm.run()
```
**Option 3**: Register Value-based functions (for direct Value access)
```typescript
vm.registerValueFunction('customOp', (a: Value, b: Value): Value => {
return toValue(toNumber(a) + toNumber(b))
})
```
Auto-wrapping handles:
- Value ↔ native type conversion (`fromValue`/`toValue`)
- Sync and async functions
- Arrays, objects, primitives, null, RegExp
### Label Usage (Preferred)
Use labels instead of numeric offsets for readability:
```
JUMP .skip
PUSH 42
HALT
.skip:
PUSH 99
HALT
```
## TypeScript Configuration
- Import alias: `#reef` maps to `./src/index.ts`
- Module system: ES modules (`"type": "module"` in package.json)
- Bun automatically handles TypeScript compilation
## Bun-Specific Notes
- Use `bun` instead of `node`, `npm`, `pnpm`, or `vite`
- No need for dotenv - Bun loads .env automatically
- Prefer Bun APIs over Node.js equivalents when available
- See .cursor/rules/use-bun-instead-of-node-vite-npm-pnpm.mdc for detailed Bun usage
## Adding a New OpCode
When adding a new instruction to ReefVM, you must update multiple files in a specific order. Follow this checklist:
### 1. Define the OpCode (src/opcode.ts)
Add the new opcode to the `OpCode` enum with comprehensive documentation:
```typescript
export enum OpCode {
// ... existing opcodes
MY_NEW_OP, // operand: <type> | stack: [inputs] → [outputs]
// Description of what it does
// Any important behavioral notes
}
```
### 2. Implement VM Execution (src/vm.ts)
Add a case to the `execute()` method's switch statement:
```typescript
async execute(instruction: Instruction) {
switch (instruction.op) {
// ... existing cases
case OpCode.MY_NEW_OP:
// Implementation
// - Pop values from this.stack as needed
// - Perform the operation
// - Push results to this.stack
// - Throw errors for invalid operations
// - Use await for async operations
break
}
}
```
Common helper methods:
- `this.binaryOp((a, b) => ...)` - For binary arithmetic/comparison
- `toNumber(value)`, `toString(value)`, `isTrue(value)`, `isEqual(a, b)` - Type coercion
- `this.scope.get(name)`, `this.scope.set(name, value)` - Variable access
### 3. Update Validator (src/validator.ts)
Add the opcode to the appropriate set:
```typescript
// If your opcode requires an operand:
const OPCODES_WITH_OPERANDS = new Set([
// ... existing
OpCode.MY_NEW_OP,
])
// If your opcode takes no operand:
const OPCODES_WITHOUT_OPERANDS = new Set([
// ... existing
OpCode.MY_NEW_OP,
])
```
If your opcode has complex operand validation, add a specific check in the validation loop around line 154.
### 4. Update Array API (src/bytecode.ts)
Add your instruction to the `InstructionTuple` type:
```typescript
type InstructionTuple =
// ... existing types
| ["MY_NEW_OP"] // No operand
| ["MY_NEW_OP", string] // String operand
| ["MY_NEW_OP", number] // Number operand
| ["MY_NEW_OP", string, number] // Multiple operands
```
If your opcode has special operand handling, add a case in `toBytecodeFromArray()` around line 241.
### 5. Write Tests (REQUIRED)
Create tests in the appropriate test file:
```typescript
// tests/basic.test.ts, tests/functions.test.ts, etc.
test("MY_NEW_OP description", async () => {
const bytecode = toBytecode([
// Setup
["PUSH", 42],
["MY_NEW_OP"],
["HALT"]
])
const result = await run(bytecode)
expect(result).toEqual({ type: "number", value: 42 })
})
// Test edge cases
test("MY_NEW_OP with invalid input", async () => {
// Test error conditions
await expect(run(bytecode)).rejects.toThrow()
})
```
**ALWAYS write tests.** Test both success cases and error conditions. Add integration tests showing real-world usage.
### 6. Document Specification (SPEC.md)
Add a formal specification entry:
```markdown
#### MY_NEW_OP
**Operand**: `<type>`
**Stack**: `[input] → [output]`
Description of what the instruction does.
**Behavior**:
- Specific behavior point 1
- Specific behavior point 2
**Errors**:
- Error condition 1
- Error condition 2
```
### 7. Update Compiler Guide (GUIDE.md)
If your opcode introduces new patterns, add examples to GUIDE.md:
```markdown
### New Pattern Name
\```
PUSH value
MY_NEW_OP
STORE result
\```
Description of the pattern and when to use it.
```
### 8. Add Examples (Optional)
If your opcode enables new functionality, add an example to `examples/`:
```typescript
// examples/my_feature.reef or examples/my_feature.ts
const example = toBytecode([
// Demonstrate the new opcode
])
```
### Checklist Summary
When adding an opcode, update in this order:
- [ ] `src/opcode.ts` - Add enum value with docs
- [ ] `src/vm.ts` - Implement execution logic
- [ ] `src/validator.ts` - Add to operand requirement set
- [ ] `src/bytecode.ts` - Add to InstructionTuple type
- [ ] `tests/*.test.ts` - Write comprehensive tests (**REQUIRED**)
- [ ] `SPEC.md` - Document formal specification
- [ ] `GUIDE.md` - Add compiler patterns (if applicable)
- [ ] `examples/` - Add example code (if applicable)
Run `bun test` to verify all tests pass before committing.
## Common Gotchas
**Jump offsets**: JUMP/JUMP_IF_FALSE/JUMP_IF_TRUE use relative offsets from the next instruction (PC + 1). PUSH_TRY/PUSH_FINALLY use absolute instruction indices.
**Stack operations**: Most binary operations pop in reverse order (second operand is popped first, then first operand).
**MAKE_ARRAY operand**: Specifies count, not a stack index. `MAKE_ARRAY #3` pops 3 items.
**Finally blocks**: The compiler must generate explicit JUMPs to finally blocks for successful try/catch completion. The VM only auto-jumps to finally on THROW.
**Variable scoping**: STORE updates existing variables in parent scopes or creates in current scope. It does NOT shadow by default.
**Identifiers**: Variable and parameter names support Unicode and emoji! Valid: `💎`, `🌟`, `変数`, `counter`. Invalid: cannot start with digits or special prefixes (`.`, `#`, `@`, `...`), cannot contain whitespace or syntax characters.