ReefVM/GUIDE.md
2025-10-28 13:05:24 -07:00

853 lines
20 KiB
Markdown

# Reef Compiler Guide
Quick reference for compiling to Reef bytecode.
## Bytecode Formats
ReefVM supports two bytecode formats:
1. **String format**: Human-readable text with opcodes and operands
2. **Array format**: TypeScript arrays with typed tuples for programmatic generation
Both formats are compiled using the same `toBytecode()` function.
## Bytecode Syntax
### Instructions
```
OPCODE operand ; comment
```
### Operand Types
**Immediate numbers** (`#N`): Counts or relative offsets
- `MAKE_ARRAY #3` - count of 3 items
- `JUMP #5` - relative offset of 5 instructions (prefer labels)
- `PUSH_TRY #10` - absolute instruction index (prefer labels)
**Labels** (`.name`): Symbolic addresses resolved at parse time
- `.label:` - define label at current position
- `JUMP .loop` - jump to label
- `MAKE_FUNCTION (x) .body` - function body at label
**Variable names**: Plain identifiers (supports Unicode and emoji!)
- `LOAD counter` - load variable
- `STORE result` - store variable
- `LOAD 💎` - load emoji variable
- `STORE 変数` - store Unicode variable
**Constants**: Literals added to constants pool
- Numbers: `PUSH 42`, `PUSH 3.14`
- Strings: `PUSH "hello"` or `PUSH 'world'`
- Booleans: `PUSH true`, `PUSH false`
- Null: `PUSH null`
## Array Format
The programmatic array format uses TypeScript tuples for type safety:
```typescript
import { toBytecode, run } from "#reef"
const bytecode = toBytecode([
["PUSH", 42], // Atom values: number | string | boolean | null
["STORE", "x"], // Variable names as strings
["LOAD", "x"],
["HALT"]
])
const result = await run(bytecode)
```
### Operand Types in Array Format
**Atoms** (`number | string | boolean | null`): Constants for PUSH
```typescript
["PUSH", 42]
["PUSH", "hello"]
["PUSH", true]
["PUSH", null]
```
**Variable names**: String identifiers
```typescript
["LOAD", "counter"]
["STORE", "result"]
```
**Label definitions**: Single-element arrays starting with `.` and ending with `:`
```typescript
[".loop:"]
[".end:"]
[".function_body:"]
```
**Label references**: Strings in jump/function instructions
```typescript
["JUMP", ".loop"]
["JUMP_IF_FALSE", ".end"]
["MAKE_FUNCTION", ["x", "y"], ".body"]
["PUSH_TRY", ".catch"]
```
**Counts**: Numbers for array/dict construction
```typescript
["MAKE_ARRAY", 3] // Pop 3 items
["MAKE_DICT", 2] // Pop 2 key-value pairs
```
### Functions in Array Format
```typescript
// Basic function
["MAKE_FUNCTION", ["x", "y"], ".body"]
// With defaults
["MAKE_FUNCTION", ["x", "y=10"], ".body"]
// Variadic
["MAKE_FUNCTION", ["...args"], ".body"]
// Named args
["MAKE_FUNCTION", ["@opts"], ".body"]
// Mixed
["MAKE_FUNCTION", ["x", "y=5", "...rest", "@opts"], ".body"]
```
### Complete Example
```typescript
const factorial = toBytecode([
["MAKE_FUNCTION", ["n", "acc=1"], ".fact"],
["STORE", "factorial"],
["JUMP", ".main"],
[".fact:"],
["LOAD", "n"],
["PUSH", 0],
["LTE"],
["JUMP_IF_FALSE", ".recurse"],
["LOAD", "acc"],
["RETURN"],
[".recurse:"],
["LOAD", "factorial"],
["LOAD", "n"],
["PUSH", 1],
["SUB"],
["LOAD", "n"],
["LOAD", "acc"],
["MUL"],
["PUSH", 2],
["PUSH", 0],
["TAIL_CALL"],
[".main:"],
["LOAD", "factorial"],
["PUSH", 5],
["PUSH", 1],
["PUSH", 0],
["CALL"],
["HALT"]
])
const result = await run(factorial) // { type: "number", value: 120 }
```
## String Format
### Functions
```
MAKE_FUNCTION (x y) .body ; Basic
MAKE_FUNCTION (x=10 y=20) .body ; Defaults
MAKE_FUNCTION (x ...rest) .body ; Variadic
MAKE_FUNCTION (x @named) .body ; Named args
MAKE_FUNCTION (x ...rest @named) .body ; Both
```
### Function Calls
Stack order (bottom to top):
```
LOAD fn
PUSH arg1 ; Positional args
PUSH arg2
PUSH "name" ; Named arg key
PUSH "value" ; Named arg value
PUSH 2 ; Positional count
PUSH 1 ; Named count
CALL
```
## Opcodes
### Stack
- `PUSH <const>` - Push constant
- `POP` - Remove top
- `DUP` - Duplicate top
### Variables
- `LOAD <name>` - Push variable value (throws if not found)
- `TRY_LOAD <name>` - Push variable value if found, otherwise push name as string (never throws)
- `STORE <name>` - Pop and store in variable
### Arithmetic
- `ADD`, `SUB`, `MUL`, `DIV`, `MOD` - Binary ops (pop 2, push result)
### Comparison
- `EQ`, `NEQ`, `LT`, `GT`, `LTE`, `GTE` - Pop 2, push boolean
### Logic
- `NOT` - Pop 1, push !value
### Control Flow
- `JUMP .label` - Unconditional jump
- `JUMP_IF_FALSE .label` - Jump if top is false or null (pops value)
- `JUMP_IF_TRUE .label` - Jump if top is truthy (pops value)
- `HALT` - Stop execution of the program
### Functions
- `MAKE_FUNCTION (params) .body` - Create function, push to stack
- `CALL` - Call function (see calling convention above)
- `TAIL_CALL` - Tail-recursive call (no stack growth)
- `RETURN` - Return from function (pops return value)
- `TRY_CALL <name>` - Call function (if found), push value (if exists), or push name as string (if not found)
- `BREAK` - Exit iterator/loop (unwinds to break target)
### Arrays
- `MAKE_ARRAY #N` - Pop N items, push array
- `ARRAY_GET` - Pop index and array, push element
- `ARRAY_SET` - Pop value, index, array; mutate array
- `ARRAY_PUSH` - Pop value and array, append to array
- `ARRAY_LEN` - Pop array, push length
### Dicts
- `MAKE_DICT #N` - Pop N key-value pairs, push dict
- `DICT_GET` - Pop key and dict, push value (or null)
- `DICT_SET` - Pop value, key, dict; mutate dict
- `DICT_HAS` - Pop key and dict, push boolean
### Unified Access
- `DOT_GET` - Pop index/key and array/dict, push value (null if missing)
### Strings
- `STR_CONCAT #N` - Pop N values, convert to strings, concatenate, push result
### Exceptions
- `PUSH_TRY .catch` - Register exception handler
- `PUSH_FINALLY .finally` - Add finally to current handler
- `POP_TRY` - Remove handler (try succeeded)
- `THROW` - Throw exception (pops error value)
## Compiler Patterns
### Function Definitions
When defining functions, you must prevent the PC from "falling through" into the function body during sequential execution. There are two standard patterns:
**Pattern 1: JUMP over function bodies (Recommended)**
```
MAKE_FUNCTION (params) .body
STORE function_name
JUMP .end ; Skip over function body
.body:
<function code>
RETURN
.end:
<continue with program>
```
**Pattern 2: Function bodies after HALT**
```
MAKE_FUNCTION (params) .body
STORE function_name
<use the function>
HALT ; Stop execution before function bodies
.body:
<function code>
RETURN
```
**Important**: Pattern 2 only works if you HALT before reaching function bodies. Pattern 1 is more flexible and required for:
- Defining multiple functions before using them
- REPL mode (incremental execution)
- Any case where execution continues after defining a function
**Why?** `MAKE_FUNCTION` creates a function value but doesn't jump to the body—it just stores the body's address. Without JUMP or HALT, the PC increments into the function body and executes it as top-level code.
### If-Else
```
<condition>
JUMP_IF_FALSE .else
<then-block>
JUMP .end
.else:
<else-block>
.end:
```
### While Loop
```
.loop:
<condition>
JUMP_IF_FALSE .end
<body>
JUMP .loop
.end:
```
### For Loop
```
<init>
.loop:
<condition>
JUMP_IF_FALSE .end
<body>
<increment>
JUMP .loop
.end:
```
### Continue
No CONTINUE opcode. Use backward jump to loop start:
```
.loop:
<condition>
JUMP_IF_FALSE .end
<early-check>
JUMP_IF_TRUE .loop ; continue
<body>
JUMP .loop
.end:
```
### Break in Loop
Mark iterator function as break target, use BREAK opcode:
```
MAKE_FUNCTION () .each_body
STORE each
LOAD collection
LOAD each
<call-iterator-with-break-semantics>
HALT
.each_body:
<condition>
JUMP_IF_TRUE .done
<body>
BREAK ; exits to caller
.done:
RETURN
```
### Short-Circuit AND
```
<left>
DUP
JUMP_IF_FALSE .end ; Short-circuit if false
POP
<right>
.end: ; Result on stack
```
### Short-Circuit OR
```
<left>
DUP
JUMP_IF_TRUE .end ; Short-circuit if true
POP
<right>
.end: ; Result on stack
```
### Try-Catch
```
PUSH_TRY .catch
<try-block>
POP_TRY
JUMP .end
.catch:
STORE err
<catch-block>
.end:
```
### Try-Catch-Finally
```
PUSH_TRY .catch
PUSH_FINALLY .finally
<try-block>
POP_TRY
JUMP .finally ; Compiler must generate this
.catch:
STORE err
<catch-block>
JUMP .finally ; And this
.finally:
<finally-block> ; Executes in both paths
.end:
```
**Important**: VM only auto-jumps to finally on THROW. For successful try/catch, compiler must explicitly JUMP to finally.
### Closures
Functions automatically capture current scope:
```
PUSH 0
STORE counter
MAKE_FUNCTION () .increment
STORE increment_fn
JUMP .main
.increment:
LOAD counter ; Captured variable
PUSH 1
ADD
STORE counter
LOAD counter
RETURN
.main:
LOAD increment_fn
PUSH 0
PUSH 0
CALL ; Returns 1
POP
LOAD increment_fn
PUSH 0
PUSH 0
CALL ; Returns 2 (counter persists!)
HALT
```
### Tail Recursion
Use TAIL_CALL instead of CALL for last call:
```
MAKE_FUNCTION (n acc) .factorial
STORE factorial
JUMP .main
.factorial:
LOAD n
PUSH 0
LTE
JUMP_IF_FALSE .recurse
LOAD acc
RETURN
.recurse:
LOAD factorial
LOAD n
PUSH 1
SUB
LOAD n
LOAD acc
MUL
PUSH 2
PUSH 0
TAIL_CALL ; Reuses stack frame
.main:
LOAD factorial
PUSH 5
PUSH 1
PUSH 2
PUSH 0
CALL ; factorial(5, 1) = 120
HALT
```
### Optional Function Calls (TRY_CALL)
Call function if defined, otherwise use value or name as string:
```
; Define optional hook
MAKE_FUNCTION () .onInit
STORE onInit
; Later: call if defined, skip if not
TRY_CALL onInit ; Calls onInit() if it's a function
; Pushes value if it exists but isn't a function
; Pushes "onInit" as string if undefined
; Use with values
PUSH 42
STORE answer
TRY_CALL answer ; Pushes 42 (not a function)
; Use with undefined
TRY_CALL unknown ; Pushes "unknown" as string
```
**Use Cases**:
- Optional hooks/callbacks in DSLs
- Shell-like languages where unknown identifiers become strings
- Templating systems with optional transformers
### String Concatenation
Build strings from multiple values:
```
; Simple concatenation
PUSH "Hello"
PUSH " "
PUSH "World"
STR_CONCAT #3 ; → "Hello World"
; With variables
PUSH "Name: "
LOAD userName
STR_CONCAT #2 ; → "Name: Alice"
; With expressions and type coercion
PUSH "Result: "
PUSH 10
PUSH 5
ADD
STR_CONCAT #2 ; → "Result: 15"
; Template-like interpolation
PUSH "User "
LOAD userId
PUSH " has "
LOAD count
PUSH " items"
STR_CONCAT #5 ; → "User 42 has 3 items"
```
**Composability**: Results can be concatenated again
```
PUSH "Hello"
PUSH " "
PUSH "World"
STR_CONCAT #3
PUSH "!"
STR_CONCAT #2 ; → "Hello World!"
```
### Unified Access (DOT_GET)
DOT_GET provides a single opcode for accessing both arrays and dicts:
```
; Array access
PUSH 10
PUSH 20
PUSH 30
MAKE_ARRAY #3
PUSH 1
DOT_GET ; → 20
; Dict access
PUSH 'name'
PUSH 'Alice'
MAKE_DICT #1
PUSH 'name'
DOT_GET ; → 'Alice'
```
**Chained access**:
```
; Access dict['users'][0]['name']
LOAD dict
PUSH 'users'
DOT_GET ; Get users array
PUSH 0
DOT_GET ; Get first user
PUSH 'name'
DOT_GET ; Get name field
```
**With variables**:
```
LOAD data
LOAD key ; Key can be string or number
DOT_GET ; Works for both array and dict
```
**Null safety**: Returns null for missing keys or out-of-bounds indices
```
MAKE_ARRAY #0
PUSH 0
DOT_GET ; → null (empty array)
MAKE_DICT #0
PUSH 'key'
DOT_GET ; → null (missing key)
```
## Key Concepts
### Truthiness
Only `null` and `false` are falsy. Everything else (including `0`, `""`, empty arrays/dicts) is truthy.
### Type Coercion
**toNumber**:
- `number` → identity
- `string` → parseFloat (or 0 if invalid)
- `boolean` → 1 (true) or 0 (false)
- `null` → 0
- Others → 0
**toString**:
- `string` → identity
- `number` → string representation
- `boolean` → "true" or "false"
- `null` → "null"
- `function` → "<function>"
- `array` → "[item, item]"
- `dict` → "{key: value, ...}"
**Arithmetic ops** (ADD, SUB, MUL, DIV, MOD) coerce both operands to numbers.
**Comparison ops** (LT, GT, LTE, GTE) coerce both operands to numbers.
**Equality ops** (EQ, NEQ) use type-aware comparison with deep equality for arrays/dicts.
**Note**: There is no string concatenation operator. ADD only works with numbers.
### Scope
- Variables resolved through parent scope chain
- STORE updates existing variable or creates in current scope
- Functions capture scope at definition time
### Identifiers
Variable and function parameter names support Unicode and emoji:
- Valid: `💎`, `🌟`, `変数`, `counter`, `_private`
- Invalid: Cannot start with digits, `.`, `#`, `@`, or `...`
- Invalid: Cannot contain whitespace or special chars: `;`, `()`, `[]`, `{}`, `=`, `'`, `"`
### Break Semantics
- CALL marks current frame as break target
- BREAK unwinds call stack to that target
- Used for Ruby-style iterator pattern
### Parameter Binding Priority
For function calls, parameters bound in order:
1. Positional argument (if provided)
2. Named argument (if provided and matches param name)
3. Default value (if defined)
4. Null
### Exception Handlers
- PUSH_TRY uses absolute addresses for catch blocks
- Nested try blocks form a stack
- THROW unwinds to most recent handler and jumps to finally (if present) or catch
- VM does NOT automatically jump to finally on success - compiler must generate JUMPs
- Finally execution in all cases is compiler's responsibility, not VM's
### Calling Convention
All calls (including native functions) push arguments in order:
1. Function
2. Positional args (in order)
3. Named args (key1, val1, key2, val2, ...)
4. Positional count (as number)
5. Named count (as number)
6. CALL or TAIL_CALL
Native functions use the same calling convention as Reef functions. They are registered into scope and called via LOAD + CALL.
### Registering Native Functions
Native TypeScript functions are registered into the VM's scope and accessed like regular variables.
**Method 1**: Pass to `run()` or `VM` constructor
```typescript
const result = await run(bytecode, {
add: (a: number, b: number) => a + b,
greet: (name: string) => `Hello, ${name}!`
})
// Or with VM
const vm = new VM(bytecode, { add, greet })
```
**Method 2**: Register after construction
```typescript
const vm = new VM(bytecode)
vm.set('add', (a: number, b: number) => a + b)
await vm.run()
```
**Method 3**: Value-based functions (for full control)
```typescript
vm.setValueFunction('customOp', (a: Value, b: Value): Value => {
return { type: 'number', value: toNumber(a) + toNumber(b) }
})
```
**Auto-wrapping**: `vm.set()` automatically converts between native TypeScript types and ReefVM Value types. Both sync and async functions work.
**Usage in bytecode**:
```
; Positional arguments
LOAD add ; Load native function from scope
PUSH 5
PUSH 10
PUSH 2 ; positionalCount
PUSH 0 ; namedCount
CALL ; Call like any other function
; Named arguments
LOAD greet
PUSH "name"
PUSH "Alice"
PUSH "greeting"
PUSH "Hi"
PUSH 0 ; positionalCount
PUSH 2 ; namedCount
CALL ; → "Hi, Alice!"
```
**Named Arguments**: Native functions support named arguments. Parameter names are extracted from the function signature at call time, and arguments are bound using the same priority as Reef functions (named arg > positional arg > default > null).
**@named Pattern**: Parameters starting with `at` followed by an uppercase letter (e.g., `atOptions`, `atNamed`) collect unmatched named arguments:
```typescript
// Basic @named - collects all named args
vm.set('greet', (atNamed: any = {}) => {
return `Hello, ${atNamed.name || 'World'}!`
})
// Mixed positional and @named
vm.set('configure', (name: string, atOptions: any = {}) => {
return {
name,
debug: atOptions.debug || false,
port: atOptions.port || 3000
}
})
```
Bytecode example:
```
; Call with mixed positional and named args
LOAD configure
PUSH "myApp" ; positional arg → name
PUSH "debug"
PUSH true
PUSH "port"
PUSH 8080
PUSH 1 ; 1 positional arg
PUSH 2 ; 2 named args (debug, port)
CALL ; atOptions receives {debug: true, port: 8080}
```
Named arguments that match fixed parameter names are bound to those parameters. Remaining unmatched named arguments are collected into the `atXxx` parameter as a plain JavaScript object.
### Calling Functions from TypeScript
You can call both Reef and native functions from TypeScript using `vm.call()`:
```typescript
const bytecode = toBytecode(`
MAKE_FUNCTION (name greeting="Hello") .greet
STORE greet
HALT
.greet:
LOAD greeting
PUSH " "
LOAD name
PUSH "!"
STR_CONCAT #4
RETURN
`)
const vm = new VM(bytecode, {
log: (msg: string) => console.log(msg) // Native function
})
await vm.run()
// Call Reef function with positional arguments
const result1 = await vm.call('greet', 'Alice')
// Returns: "Hello Alice!"
// Call Reef function with named arguments (pass as final object)
const result2 = await vm.call('greet', 'Bob', { greeting: 'Hi' })
// Returns: "Hi Bob!"
// Call Reef function with only named arguments
const result3 = await vm.call('greet', { name: 'Carol', greeting: 'Hey' })
// Returns: "Hey Carol!"
// Call native function
await vm.call('log', 'Hello from TypeScript!')
```
**How it works**:
- `vm.call(functionName, ...args)` looks up the function (Reef or native) in the VM's scope
- For Reef functions: converts to callable JavaScript function
- For native functions: calls directly
- Arguments are automatically converted to ReefVM Values
- Returns the result (automatically converted back to JavaScript types)
**Named arguments**: Pass a plain object as the final argument to provide named arguments. If the last argument is a non-array object, it's treated as named arguments. All preceding arguments are treated as positional.
**Type conversion**: Arguments and return values are automatically converted between JavaScript types and ReefVM Values:
- Primitives: `number`, `string`, `boolean`, `null`
- Arrays: converted recursively
- Objects: converted to ReefVM dicts
- Functions: Reef functions are converted to callable JavaScript functions
### REPL Mode (Incremental Compilation)
ReefVM supports incremental bytecode execution for building REPLs. This allows you to execute code line-by-line while preserving scope and avoiding re-execution of side effects.
**The Problem**: By default, `vm.run()` resets the program counter (PC) to 0, re-executing all previous bytecode. This makes it impossible to implement a REPL where each line executes only once.
**The Solution**: Use `vm.continue()` to resume execution from where you left off:
```typescript
// Line 1: Define variable
const line1 = toBytecode([
["PUSH", 42],
["STORE", "x"]
])
const vm = new VM(line1)
await vm.run() // Execute first line
// Line 2: Use the variable
const line2 = toBytecode([
["LOAD", "x"],
["PUSH", 10],
["ADD"]
])
vm.appendBytecode(line2) // Append new bytecode with proper constant remapping
await vm.continue() // Execute ONLY the new bytecode
// Result: 52 (42 + 10)
// The first line never re-executed!
```
**Key methods**:
- `vm.run()`: Resets PC to 0 and runs from the beginning (normal execution)
- `vm.continue()`: Continues from current PC (REPL mode)
- `vm.appendBytecode(bytecode)`: Helper that properly appends bytecode with constant index remapping
**Important**: Don't use `HALT` in REPL mode! The VM naturally stops when it runs out of instructions. Using `HALT` sets `vm.stopped = true`, which prevents `continue()` from resuming.
**Example REPL pattern**:
```typescript
const vm = new VM(toBytecode([]), { /* native functions */ })
while (true) {
const input = await getUserInput() // Get next line from user
const bytecode = compileLine(input) // Compile to bytecode (no HALT!)
vm.appendBytecode(bytecode) // Append to VM
const result = await vm.continue() // Execute only the new code
console.log(fromValue(result)) // Show result to user
}
```
This pattern ensures:
- Variables persist between lines
- Side effects (like `echo` or function calls) only run once
- Previous bytecode never re-executes
- Scope accumulates across all lines
### Empty Stack
- RETURN with empty stack returns null
- HALT with empty stack returns null