# ReefVM Specification Version 1.0 ## Overview The ReefVM is a stack-based bytecode virtual machine designed for the Shrimp programming language. It supports closures, tail call optimization, exception handling, variadic functions, named parameters, and Ruby-style iterators with break/continue. ## Architecture ### Components - **Value Stack**: Operand stack for computation - **Call Stack**: Call frames for function invocations - **Exception Handlers**: Stack of try/catch handlers - **Scope Chain**: Linked scopes for lexical variable resolution (includes native functions) - **Program Counter (PC)**: Current instruction index - **Constants Pool**: Immutable values and function metadata ### Execution Model 1. VM loads bytecode with instructions and constants 2. PC starts at instruction 0 3. Each instruction is executed sequentially (unless jumps occur) 4. Execution continues until HALT or end of instructions 5. Final value is top of stack (or null if empty) ## Value Types All runtime values are tagged unions: ```typescript type Value = | { type: 'null', value: null } | { type: 'boolean', value: boolean } | { type: 'number', value: number } | { type: 'string', value: string } | { type: 'array', value: Value[] } | { type: 'dict', value: Map } | { type: 'function', params: string[], defaults: Record, body: number, parentScope: Scope, variadic: boolean, named: boolean } | { type: 'native', fn: NativeFunction, value: '' } ``` ### Type Coercion **toNumber**: number → identity, string → parseFloat (or 0), boolean → 1/0, others → 0 **toString**: string → identity, number → string, boolean → string, null → "null", function → "", array → "[item, item]", dict → "{key: value, ...}" **isTrue**: Only `null` and `false` are falsy. Everything else (including `0`, `""`, empty arrays, empty dicts) is truthy. ## Bytecode Format ```typescript type Bytecode = { instructions: Instruction[] constants: Constant[] } type Instruction = { op: OpCode operand?: number | string } type Constant = | Value | { type: 'function_def', params: string[], defaults: Record, body: number, variadic: boolean, named: boolean } ``` ## Scope Chain Variables are resolved through a linked scope chain: ```typescript class Scope { locals: Map; parent?: Scope; } ``` **Variable Resolution (LOAD)**: 1. Check current scope's locals 2. If not found, recursively check parent 3. If not found anywhere, throw error **Variable Resolution (TRY_LOAD)**: 1. Check current scope's locals 2. If not found, recursively check parent 3. If not found anywhere, return variable name as string (no error) **Variable Assignment (STORE)**: 1. If variable exists in current scope, update it 2. Else if variable exists in any parent scope, update it there 3. Else create new variable in current scope This implements "assign to outermost scope where defined" semantics. ## Call Frames ```typescript type CallFrame = { returnAddress: number // Where to resume after RETURN returnScope: Scope // Scope to restore after RETURN isBreakTarget: boolean // Can be targeted by BREAK } ``` ## Exception Handlers ```typescript type ExceptionHandler = { catchAddress: number // Where to jump on exception finallyAddress?: number // Where to jump for finally block (always runs) callStackDepth: number // Call stack depth when handler pushed scope: Scope // Scope to restore in catch block } ``` ## Opcodes ### Stack Operations #### PUSH **Operand**: Index into constants pool (number) **Effect**: Push constant onto stack **Stack**: [] → [value] #### POP **Operand**: None **Effect**: Discard top of stack **Stack**: [value] → [] #### DUP **Operand**: None **Effect**: Duplicate top of stack **Stack**: [value] → [value, value] #### SWAP **Operand**: None **Effect**: Swap the top two values on the stack **Stack**: [value1, value2] → [value2, value1] ### Variable Operations #### LOAD **Operand**: Variable name (string) **Effect**: Push variable value onto stack **Stack**: [] → [value] **Errors**: Throws if variable not found in scope chain #### STORE **Operand**: Variable name (string) **Effect**: Store top of stack into variable (following scope chain rules) **Stack**: [value] → [] #### TRY_LOAD **Operand**: Variable name (string) **Effect**: Push variable value onto stack if found, otherwise push variable name as string **Stack**: [] → [value | name] **Errors**: Never throws (unlike LOAD) **Behavior**: 1. Search for variable in scope chain (current scope and all parents) 2. If found, push the variable's value onto stack 3. If not found, push the variable name as a string value onto stack **Use Cases**: - Shell-like behavior where strings don't need quotes **Example**: ``` PUSH 42 STORE x TRY_LOAD x ; Pushes 42 (variable exists) TRY_LOAD y ; Pushes "y" (variable doesn't exist) ``` ### Arithmetic Operations All arithmetic operations pop two values, perform operation, push result as number. #### ADD **Stack**: [a, b] → [a + b] Performs different operations depending on operand types: - If either operand is a string, converts both to strings and concatenates - Else if both operands are arrays, concatenates the arrays - Else if both operands are dicts, merges them (b's keys overwrite a's keys on conflict) - Else if both operands are numbers, performs numeric addition - Otherwise, throws an error **Examples**: - `5 + 3` → `8` (numeric addition) - `"hello" + " world"` → `"hello world"` (string concatenation) - `"count: " + 42` → `"count: 42"` (string concatenation) - `100 + " items"` → `"100 items"` (string concatenation) - `[1, 2, 3] + [4]` → `[1, 2, 3, 4]` (array concatenation) - `[1, 2] + [3, 4]` → `[1, 2, 3, 4]` (array concatenation) - `{a: 1} + {b: 2}` → `{a: 1, b: 2}` (dict merge) - `{a: 1, b: 2} + {b: 99}` → `{a: 1, b: 99}` (dict merge, b overwrites) **Invalid operations** (throw errors): - `true + false` → Error - `null + 5` → Error - `[1] + 5` → Error - `{a: 1} + 5` → Error #### SUB **Stack**: [a, b] → [a - b] #### MUL **Stack**: [a, b] → [a * b] #### DIV **Stack**: [a, b] → [a / b] #### MOD **Stack**: [a, b] → [a % b] ### Comparison Operations All comparison operations pop two values, compare, push boolean result. #### EQ **Stack**: [a, b] → [boolean] **Note**: Type-aware equality (deep comparison for arrays/dicts) #### NEQ **Stack**: [a, b] → [boolean] #### LT **Stack**: [a, b] → [boolean] **Note**: Numeric comparison (values coerced to numbers) #### GT **Stack**: [a, b] → [boolean] **Note**: Numeric comparison (values coerced to numbers) #### LTE **Stack**: [a, b] → [boolean] **Note**: Numeric comparison (values coerced to numbers) #### GTE **Stack**: [a, b] → [boolean] **Note**: Numeric comparison (values coerced to numbers) ### Logical Operations #### NOT **Stack**: [a] → [!isTrue(a)] **Note on AND/OR**: There are no AND/OR opcodes. Short-circuiting logical operations are implemented at the compiler level using JUMP instructions: **AND pattern** (short-circuits if left side is false): ``` DUP JUMP_IF_FALSE #2 # skip POP and POP end: ``` **OR pattern** (short-circuits if left side is true): ``` DUP JUMP_IF_TRUE #2 # skip POP and POP end: ``` ### Control Flow #### JUMP **Operand**: Offset (number) **Effect**: Add offset to PC (relative jump) **Stack**: No change #### JUMP_IF_FALSE **Operand**: Offset (number) **Effect**: If top of stack is falsy, add offset to PC (relative jump) **Stack**: [condition] → [] #### JUMP_IF_TRUE **Operand**: Offset (number) **Effect**: If top of stack is truthy, add offset to PC (relative jump) **Stack**: [condition] → [] #### BREAK **Operand**: None **Effect**: Unwind call stack until frame with `isBreakTarget = true`, resume there **Stack**: No change **Errors**: Throws if no break target found **Behavior**: 1. Pop frames from call stack 2. For each frame, restore its returnScope and returnAddress 3. Stop when finding frame with `isBreakTarget = true` 4. Resume execution at that frame's return address **Note on CONTINUE**: There is no CONTINUE opcode. Compilers implement continue behavior using JUMP with negative offsets to jump back to the loop start. ### Exception Handling #### PUSH_TRY **Operand**: Catch block offset (number) **Effect**: Push exception handler **Stack**: No change Registers a try block. If THROW occurs before POP_TRY, execution jumps to catch address. #### PUSH_FINALLY **Operand**: Finally block offset (number) **Effect**: Add finally address to most recent exception handler **Stack**: No change **Errors**: Throws if no exception handler to modify Adds a finally block to the current try/catch. The finally block will execute whether an exception is thrown or not. #### POP_TRY **Operand**: None **Effect**: Pop exception handler (try block completed without exception) **Stack**: No change **Errors**: Throws if no handler to pop **Behavior**: 1. Pop exception handler 2. Continue to next instruction **Notes**: - The VM does NOT automatically jump to finally blocks on POP_TRY - The compiler must explicitly generate JUMP instructions to finally blocks when the try block completes normally - The compiler must ensure catch blocks also jump to finally when present - Finally blocks should end with normal control flow (no special terminator needed) #### THROW **Operand**: None **Effect**: Throw exception with error value from stack **Stack**: [errorValue] → (unwound) **Behavior**: 1. Pop error value from stack 2. If no exception handlers, throw JavaScript Error with error message 3. Otherwise, pop most recent exception handler 4. Unwind call stack to handler's depth 5. Restore handler's scope 6. Push error value back onto stack 7. If handler has `finallyAddress`, jump there; otherwise jump to `catchAddress` **Notes**: - When THROW jumps to finally (if present), the error value remains on stack for the finally block - The compiler must structure catch/finally blocks appropriately to handle the error value - If finally is present, the catch block is typically entered via a jump from the finally block or through explicit compiler-generated control flow ### Function Operations #### MAKE_FUNCTION **Operand**: Index into constants pool (number) **Effect**: Create function value, capturing current scope **Stack**: [] → [function] The constant must be a `function_def` with: - `params`: Parameter names - `defaults`: Map of param names to constant indices for default values - `body`: Instruction address of function body - `variadic`: If true, second-to-last param (if `named` is also true) or last param collects remaining positional args as array - `named`: If true, last param collects unmatched named args as dict The created function captures `currentScope` as its `parentScope`. #### CALL **Operand**: None **Stack**: [fn, arg1, arg2, ..., name1, val1, name2, val2, ..., positionalCount, namedCount] → [returnValue] **Behavior**: 1. Pop namedCount from stack (top of stack) 2. Pop positionalCount from stack 3. Pop named arguments (name/value pairs) from stack 4. Pop positional arguments from stack 5. Pop function from stack 6. **If function is native**: - Mark current frame (if exists) as break target - Call native function with positional args - Push return value onto stack - Done (skip steps 7-11) 7. Mark current frame (if exists) as break target (`isBreakTarget = true`) 8. Push new call frame with current PC and scope 9. Create new scope with function's parentScope as parent 10. Bind parameters: - For regular functions: bind params by position, then by name, then defaults, then null - For variadic functions: bind fixed params, collect rest into array - For functions with `named: true`: bind fixed params by position/name, collect unmatched named args into dict 11. Set currentScope to new scope 12. Jump to function body **Parameter Binding Priority** (for fixed params): 1. Named argument (if provided and matches param name) 2. Positional argument (if provided) 3. Default value (if defined) 4. Null **Named Args Handling**: - Named args that match fixed parameter names are bound to those params - If the function has `named: true`, remaining named args (that don't match any fixed param) are collected into the last parameter as a dict - This allows flexible calling: `fn(x=10, y=20, extra=30)` where `extra` goes to the named args dict - **Native functions support named arguments** - parameter names are extracted from the function signature at call time **Errors**: Throws if top of stack is not a function (or native function) #### TAIL_CALL **Operand**: None **Effect**: Same as CALL, but reuses current call frame **Stack**: [fn, arg1, arg2, ..., name1, val1, name2, val2, ..., positionalCount, namedCount] → [returnValue] **Behavior**: Identical to CALL except: - Does NOT push a new call frame - Replaces currentScope instead of creating nested scope - Enables unbounded tail recursion without stack overflow #### RETURN **Operand**: None **Effect**: Return from function **Stack**: [returnValue] → (restored stack with returnValue on top) **Behavior**: 1. Pop return value (or null if stack empty) 2. Pop call frame 3. Restore scope from frame 4. Set PC to frame's return address 5. Push return value onto stack **Errors**: Throws if no call frame to return from #### TRY_CALL **Operand**: Variable name (string) **Effect**: Conditionally call function or push value/string onto stack **Stack**: [] → [returnValue | value | name] **Errors**: Never throws (unlike CALL) **Behavior**: 1. Look up variable by name in scope chain 2. **If variable is a function**: Call it with 0 arguments (no positional, no named) and push the returned value onto the stack. 3. **If variable exists but is not a function**: Push the variable's value onto stack 4. **If variable doesn't exist**: Push the variable name as a string onto stack **Use Cases**: - DSL/templating languages with "call if callable, otherwise use as literal" semantics - Shell-like behavior where unknown identifiers become strings - Optional function hooks (call if defined, silently skip if not) **Implementation Note**: - Uses intentional fall-through in VM switch statement from TRY_CALL to CALL case - When function is found, stacks are set up to match CALL's expectations exactly - No break target marking or frame pushing occurs when non-function value is found **Example**: ``` MAKE_FUNCTION () .body STORE greet PUSH 42 STORE answer TRY_CALL greet ; Calls function greet(), returns its value TRY_CALL answer ; Pushes 42 (number value) TRY_CALL unknown ; Pushes "unknown" (string) .body: PUSH "Hello!" RETURN ``` ### Array Operations #### MAKE_ARRAY **Operand**: Number of items (number) **Effect**: Create array from N stack items **Stack**: [item1, item2, ..., itemN] → [array] Items are popped in reverse order (item1 is array[0]). #### ARRAY_GET **Operand**: None **Effect**: Get array element at index **Stack**: [array, index] → [value] **Errors**: Throws if not array or index out of bounds Index is coerced to number and floored. #### ARRAY_SET **Operand**: None **Effect**: Set array element at index (mutates array) **Stack**: [array, index, value] → [] **Errors**: Throws if not array or index out of bounds #### ARRAY_PUSH **Operand**: None **Effect**: Append value to end of array (mutates array, grows by 1) **Stack**: [array, value] → [] **Errors**: Throws if not array #### ARRAY_LEN **Operand**: None **Effect**: Get array length **Stack**: [array] → [length] **Errors**: Throws if not array ### Dictionary Operations #### MAKE_DICT **Operand**: Number of key-value pairs (number) **Effect**: Create dict from N key-value pairs **Stack**: [key1, val1, key2, val2, ...] → [dict] Keys are coerced to strings. #### DICT_GET **Operand**: None **Effect**: Get dict value for key **Stack**: [dict, key] → [value] Returns null if key not found. Key is coerced to string. **Errors**: Throws if not dict #### DICT_SET **Operand**: None **Effect**: Set dict value for key (mutates dict) **Stack**: [dict, key, value] → [] Key is coerced to string. **Errors**: Throws if not dict #### DICT_HAS **Operand**: None **Effect**: Check if key exists in dict **Stack**: [dict, key] → [boolean] Key is coerced to string. **Errors**: Throws if not dict ### Unified Access #### DOT_GET **Operand**: None **Effect**: Get value from array or dict **Stack**: [array|dict, index|key] → [value] **Behavior**: - If target is array: coerce index to number and access `array[index]` - If target is dict: coerce key to string and access `dict.get(key)` - Returns null if index out of bounds or key not found **Errors**: Throws if target is not array or dict **Use Cases**: - Unified syntax for accessing both arrays and dicts - Chaining access operations: `obj.users.0.name` - Generic accessor that works with any indexable type **Example**: ``` ; Array access PUSH 10 PUSH 20 PUSH 30 MAKE_ARRAY #3 PUSH 1 DOT_GET ; → 20 ; Dict access PUSH 'name' PUSH 'Alice' MAKE_DICT #1 PUSH 'name' DOT_GET ; → 'Alice' ; Chained access ; dict['users'][0] LOAD dict PUSH 'users' DOT_GET PUSH 0 DOT_GET ``` ### String Operations #### STR_CONCAT **Operand**: Number of values to concatenate (number) **Effect**: Concatenate N values from stack into a single string **Stack**: [val1, val2, ..., valN] → [string] **Behavior**: 1. Pop N values from stack (in reverse order) 2. Convert each value to string using `toString()` 3. Concatenate all strings in order (val1 + val2 + ... + valN) 4. Push resulting string onto stack **Type Coercion**: - Numbers → string representation (e.g., `42` → `"42"`) - Booleans → `"true"` or `"false"` - Null → `"null"` - Strings → identity - Arrays → `"[item, item]"` format - Dicts → `"{key: value, ...}"` format - Functions → `""` **Use Cases**: - Building dynamic strings from multiple parts - Template string interpolation - String formatting with mixed types **Composability**: - Results can be concatenated again with additional STR_CONCAT operations - Can leave values on stack (only consumes specified count) **Example**: ``` PUSH "Hello" PUSH " " PUSH "World" STR_CONCAT #3 ; → "Hello World" PUSH "Count: " PUSH 42 PUSH ", Active: " PUSH true STR_CONCAT #4 ; → "Count: 42, Active: true" ``` **Edge Cases**: - `STR_CONCAT #0` produces empty string `""` - `STR_CONCAT #1` converts single value to string - If stack has fewer values than count, behavior depends on implementation (may use empty strings or throw) ### TypeScript Interop Native TypeScript functions are registered into the VM's scope and accessed via regular LOAD/CALL operations. They behave identically to Reef functions from the bytecode perspective. **Registration**: ```typescript const vm = new VM(bytecode, { add: (a: number, b: number) => a + b, greet: (name: string) => `Hello, ${name}!` }) // Or after construction: vm.set('multiply', (a: number, b: number) => a * b) ``` **Usage in Bytecode**: ``` LOAD add ; Load native function from scope PUSH 5 PUSH 10 PUSH 2 ; positionalCount PUSH 0 ; namedCount CALL ; Call it like any other function ``` **Native Function Types**: 1. **Auto-wrapped functions** (via `vm.set()`): Accept and return native TypeScript types (number, string, boolean, array, object, etc.). The VM automatically converts between Value types and native types. 2. **Value-based functions** (via `vm.setValueFunction()`): Accept and return `Value` types directly for full control over type handling. **Auto-Wrapping Behavior**: - Parameters: `Value` → native type (number, string, boolean, array, object, null, RegExp) - Return value: native type → `Value` - Supports sync and async functions - Objects convert to dicts, arrays convert to Value arrays **Named Arguments**: - Native functions support named arguments by extracting parameter names from the function signature - Parameter binding follows the same priority as Reef functions: named arg > positional arg > default > null - TypeScript rest parameters (`...args`) are supported and behave like Reef variadic parameters **Examples**: ```typescript // Auto-wrapped native types vm.set('add', (a: number, b: number) => a + b) vm.set('greet', (name: string) => `Hello, ${name}!`) vm.set('range', (n: number) => Array.from({ length: n }, (_, i) => i)) // With defaults vm.set('greet', (name: string, greeting = 'Hello') => { return `${greeting}, ${name}!` }) // Variadic functions vm.set('sum', (...nums: number[]) => { return nums.reduce((acc, n) => acc + n, 0) }) // Value-based for custom logic vm.setValueFunction('customOp', (a: Value, b: Value): Value => { return { type: 'number', value: toNumber(a) + toNumber(b) } }) // Async functions vm.set('fetchData', async (url: string) => { const response = await fetch(url) return response.json() }) ``` **Calling with Named Arguments**: ``` ; Call with positional args LOAD greet PUSH "Alice" PUSH 1 PUSH 0 CALL ; → "Hello, Alice!" ; Call with named args LOAD greet PUSH "name" PUSH "Bob" PUSH "greeting" PUSH "Hi" PUSH 0 PUSH 2 CALL ; → "Hi, Bob!" ``` ### Special #### HALT **Operand**: None **Effect**: Stop execution **Stack**: No change ## Label Syntax The bytecode format supports labels for improved readability: **Label Definition**: `.label_name:` marks an instruction position **Label Reference**: `.label_name` in operands (e.g., `JUMP .loop_start`) Labels are resolved to numeric offsets during parsing. The original numeric offset syntax (`#N`) is still supported for backwards compatibility. Example with labels: ``` JUMP .skip .middle: PUSH 999 HALT .skip: PUSH 42 HALT ``` Equivalent with numeric offsets: ``` JUMP #2 PUSH 999 HALT PUSH 42 HALT ``` ## Common Bytecode Patterns ### If-Else Statement ``` LOAD 'x' PUSH 5 GT JUMP_IF_FALSE .else # then block JUMP .end .else: # else block .end: ``` ### While Loop ``` .loop_start: # condition JUMP_IF_FALSE .loop_end # body JUMP .loop_start .loop_end: ``` ### Function Definition ``` MAKE_FUNCTION .function_body STORE 'functionName' JUMP .skip_body .function_body: # function code RETURN .skip_body: ``` ### Try-Catch ``` PUSH_TRY .catch ; try block POP_TRY JUMP .end .catch: STORE 'errorVar' ; Error is on stack ; catch block .end: ``` ### Try-Catch-Finally ``` PUSH_TRY .catch PUSH_FINALLY .finally ; try block POP_TRY JUMP .finally .catch: STORE 'errorVar' ; Error is on stack ; catch block JUMP .finally .finally: ; finally block (executes in both cases) .end: ``` ### Named Function Call ``` LOAD 'mkdir' PUSH 'src/bin' # positional arg PUSH 'recursive' # name PUSH true # value PUSH 1 # positionalCount PUSH 1 # namedCount CALL ``` ### Tail Recursive Function ``` MAKE_FUNCTION (n acc) .factorial_body STORE 'factorial' JUMP .main .factorial_body: LOAD 'n' PUSH 0 EQ JUMP_IF_FALSE .recurse LOAD 'acc' RETURN .recurse: LOAD 'factorial' LOAD 'n' PUSH 1 SUB LOAD 'n' LOAD 'acc' MUL PUSH 2 # positionalCount PUSH 0 # namedCount TAIL_CALL # No stack growth! .main: LOAD 'factorial' PUSH 5 PUSH 1 PUSH 2 # positionalCount PUSH 0 # namedCount CALL ``` ## Error Conditions ### Runtime Errors All of these should throw errors: 1. **Undefined Variable**: LOAD of non-existent variable 2. **Type Mismatch**: ARRAY_GET on non-array, DICT_GET on non-dict, CALL on non-function 3. **Index Out of Bounds**: ARRAY_GET/SET with invalid index 4. **Stack Underflow**: Arithmetic ops without enough operands 5. **Uncaught Exception**: THROW with no exception handlers 6. **Break Outside Loop**: BREAK with no break target 7. **Continue Outside Loop**: CONTINUE with no continue target 8. **Return Outside Function**: RETURN with no call frame 9. **Mismatched Handler**: POP_TRY with no handler 10. **Invalid Constant**: PUSH with invalid constant index 11. **Invalid Function Definition**: MAKE_FUNCTION with non-function_def constant ## Edge Cases ### Empty Stack - Arithmetic/comparison ops on empty stack should throw - RETURN with empty stack returns null - HALT with empty stack returns null ### Null Values - Arithmetic with null coerces to 0 - Comparisons with null work normally - Null is falsy ### Scope Shadowing - Variables in inner scopes shadow outer scopes during LOAD - STORE updates outermost scope where variable is defined ### Function Parameter Binding - Missing positional args → use named args → use defaults → use null - Extra positional args → collected by variadic parameter or ignored - Extra named args → collected by named args parameter (if `named: true`) or ignored - Named arg matching is case-sensitive ### Tail Call Optimization - TAIL_CALL reuses frame, so return address is from original caller - Multiple tail calls in sequence never grow stack - TAIL_CALL can call different function (not just self-recursive) ### Break/Continue Semantics - BREAK unwinds to frame that called the iterator function - Multiple nested function calls: break exits all of them until reaching marked frame - CONTINUE is implemented by the compiler using JUMPs ### Exception Unwinding - THROW unwinds call stack to handler's depth - Exception handlers form a stack (nested try blocks) - Error value on stack is available in catch/finally blocks - When THROW occurs and handler has finallyAddress, VM jumps to finally first - Compiler is responsible for structuring control flow so finally executes in all cases - Finally typically executes after try (if no exception) or after catch (if exception), but control flow is compiler-managed ## VM Initialization ```typescript // Register native functions during construction const vm = new VM(bytecode, { add: (a: number, b: number) => a + b, greet: (name: string) => `Hello, ${name}!` }) // Or register after construction vm.set('multiply', (a: number, b: number) => a * b) // Or use Value-based functions vm.setValueFunction('customOp', (a: Value, b: Value): Value => { return { type: 'number', value: toNumber(a) + toNumber(b) } }) const result = await vm.run() ``` ## Testing Considerations ### Unit Tests Should Cover 1. **Each opcode** individually with minimal setup 2. **Type coercion** for arithmetic, comparison, and logical ops 3. **Scope chain** resolution (local, parent, global) 4. **Call frames** (nested calls, return values) 5. **Exception handling** (nested try blocks, unwinding, finally blocks) 6. **Break/continue** (nested functions, iterator pattern) 7. **Closures** (capturing variables, multiple nesting levels) 8. **Tail calls** (self-recursive, mutual recursion) 9. **Parameter binding** (positional, named, defaults, variadic, named args collection, combinations) 10. **Array/dict operations** (creation, access, mutation) 11. **Error conditions** (all error cases listed above) 12. **Edge cases** (empty stack, null values, shadowing, etc.) ### Integration Tests Should Cover 1. **Recursive functions** (factorial, fibonacci) 2. **Iterator pattern** (each with break) 3. **Closure examples** (counters, adder factories) 4. **Exception examples** (try/catch/throw chains) 5. **Complex scope** (deeply nested functions) 6. **Mixed features** (variadic + defaults + named args) ### Property-Based Tests Should Cover 1. **Stack integrity** (stack size matches expectations after ops) 2. **Scope integrity** (variables remain accessible) 3. **Frame integrity** (call stack unwinds correctly) ## Version History - **1.0** (2024): Initial specification ## Notes - PC increment happens after each instruction execution - Jump instructions use relative offsets (added to current PC after increment) - All async operations (native functions) must be awaited - Arrays and dicts are mutable (pass by reference) - Functions are immutable values - The VM is single-threaded (no concurrency primitives)